

DIN Rail-Mounted Frequency Transmitter DIN1x1 ISO F-P-O

General characteristics:

•Accuracy Grade:0.1/0.2/0.5. Extremely high linearity in whole process(nonlinearity<0.1%)

•Three-port isolation:2500VDC power supply/input/output

- •Power supply:5VDC/12VDC/24VDC etc.
- •Input frequency signal:0-1KHz/0-5KHz/0-10KHz,etc.

Output voltage: 0-2.5V/0-5V/0-10V or current signal: 0-10mA/0-20mA/4-20mA

•Industrial temperature range: -20~+85 °C

•DIN35 Rail Mounting package

ISO9001:2008

CE ROHS

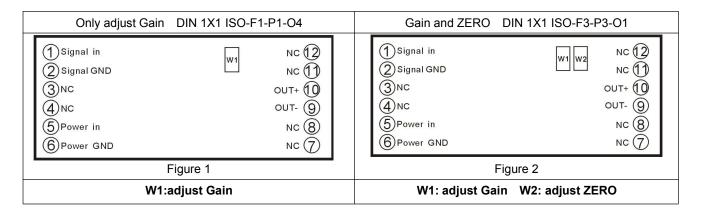
Applications:

- •Sine wave, square wave, sawtooth wave etc. signal isolated amplifier and converter.
- Transducer(FA) frequency signal data acquisition.
- •Generator, electromotor etc. Circumgyratory systems.
- Equipment and sensor signal acquisition.
- •Non-electricity meter signal transfer

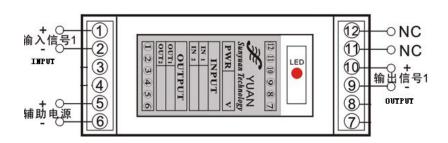
Part number and description

Input cianal	Accessorial	Output rated voltage (or current)			
Input signal	power supply	Output rated voitage (or current)			
F1:0-1KHz	P1:DC24V	O1:4-20mA			
F2:0-5KHz	P2:DC12V	O2:0-20mA			
F3:0-10KHz	P3:DC5V	O4:0-5V			
F8:User-defined	P4:DC15V	O5:0-10V			
	P8:User-defined	O6:1-5V			
		O8: User-defined			

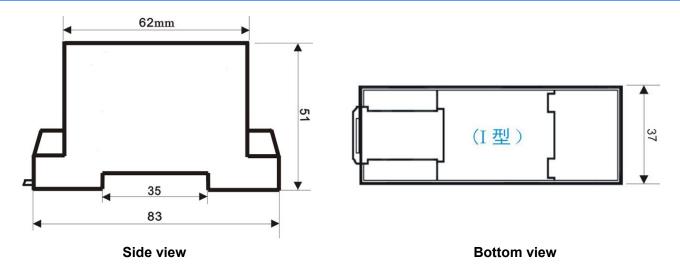
Model Selection Examples: Input: 0-1K Power Supply:24VDC ,Output:0-5V Part No.:DIN1x1 ISO F1-P1-O4


Technical parameter:

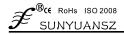
Param	neter	Test Condition	Mix	Туре	Max	Unit
Isolated voltage		AC,50Hz,1min	1000	2500		V(rms)
Input signal	Frequency		0	1000	20000	Hz
Input signal	Voltage		2.5	5		Vp-p
G.Adj	Voltage	5K		1		KHZ/V
G.Auj	Current	5K		1/4		KHZ/mA
G.Adj temperatu	re drift			100		ppm/℃
Non-linearity				0.1		%FSR
Input maladjuste	d voltage			5	7	mV
Output signal				5	10	V
Load capability		Vout=10V	1			kΩ
Signal output rip	ple	No-filter		5	7	mV
Signal voltage te	emperature drift			25		μV/°C
Reference voltage	ge source	lout<50mA		5		V
Assistant	Assistant Voltage		3.3	12	24	VDC
power Current		VD=24V		50		mA
Power output ripple		No-filter	10			mV
Operating temper	erature		-20		80	$^{\circ}$
Storage tempera	ature		-40		125	$^{\circ}$


Functional Block

DIN Rail PCB Size:79.5x32.5mm


Terminal Definition

Pin	Function
1	Fin
2	GND
3	NO PIN
4	NO PIN
5	Power in
6	Power GND
7	NO PIN
8	NO PIN
9	Out-
10	Out+
11	NO PIN
12	NO PIN



Top view

Dimension:

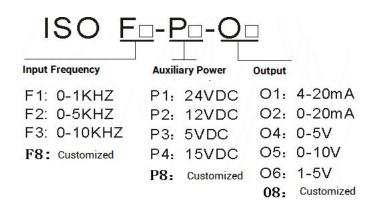
Note: The specification is subject to change without notice.

Frequency Signal (FV/ FI conversion) Isolation Converter IC

Sine wave, square wave, saw wave and other pulse frequency signals conversion to analog signal

ISO F-P-O Series

Features	Applications
Precision grade: 0.1 0.2 0.5.	●Sine wave, square wave, saw wave signal
High linearity in full scale (non-linearity <0.1%)	isolated conversion and amplification.
• 3kVDC isolation voltage among auxiliary power/signal	•Frequency sensor signal acquisition, isolated
input/signal output	conversion.
Auxiliary power: 5VDC, 12VDC, 24VDC.	Frequency transducer(FA) frequency signal data
Converts 0-1KHz/0-5KHz/0-10KHz and other	acquisition and controlling.
frequency signals into standard	Generator, electric motor and other rotating
0-75mV/0-2.5V/0-5V/0-10V voltage signal or	equipment speed monitoring.
0-10mA/0-20mA/4-20mA current signal.	Transformer operating frequency detection.
Small size SIP-16Pin, in accordance with UL94V-0.	Meters, instruments and sensor signal collection
 Industrial operating temperature: -40~+85 °C 	and transmission.
	Non-electric signal transmission.


Introduction

SUNYUAN ISO Series frequency signal isolated converter is a kind of hybrid integrated circuit IC which converts sine wave, square wave, saw wave frequency signals into standard signal based on rated proportion. Inside the circuit, it has integrated one set of multi-channel high isolation DC/DC module and a pieces of high deficient frequency signal isolation converter. The isolated converter can be applied in various types of frequency signal isolation and conversion. The SMD technique and new high-tech structures used make the 3kVDC isolation among auxiliary power, I/O and can meet the requirements in industrial operating temperature range, humidity, vibration and other extreme conditions. ISO series frequency signal isolated converter is easy to achieve the frequency signal transmission only with few external components.

Max. Rated Value: (If exceed this range, may cause un-repairable defects.)

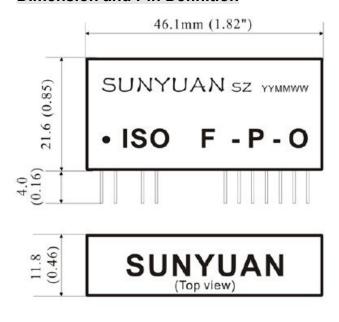
Continuous Isolation Voltage	3KVDC/rms
PW input range	±25%Vdd
Junction (ambient)Temperature	- 45℃ ~ + 85℃
Lead Temperature (<10s)	+300℃
Output Voltage Min. Load	2ΚΩ

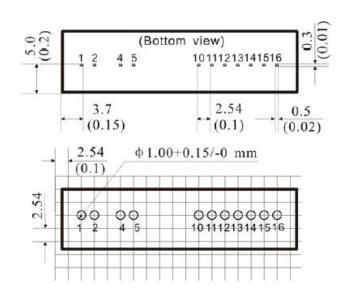
Model Selection

Model Selection Examples

E.g.1: Signal Input: 0-1KHZ, Signal Output: 4-20 mA; Auxiliary Power: 24V, SIP 16 Package.

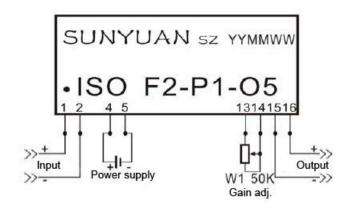
Product Model No: ISO F1-P1-O1

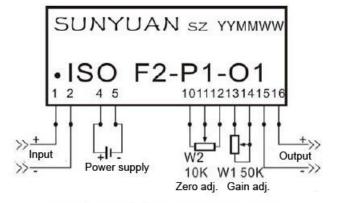

E.g.2: Signal Input: 0-10KHZ, Signal Output: 0-5V; Auxiliary Power: 12V, SIP 16 Package.


Product Model No: ISO F3-P2-O4

Technical Parameters

Item	s	Testing Conditions	Min.	Typical Value	Max.	Unit	
Isolated Volta	ge	AC,50Hz,1min	1000	1500		V(rms)	
Cianal Innut	Frequen		0	1000	20000	Hz	
Signal Input	Voltage		2.5	5	50	V _{P-P}	
Gain	Voltage	50k potentiometer		1		KHZ/V	
Gaill	Current	50k potentiometer		1/4		KHZ/mA	
Gain Temp. D	rift			100		ppm/°C	
Non-linearity				0.1		%FSR	
Input Offset V	oltage			1	5	mV	
Signal Output				5	10	V	
Load capacity	1	Vout=10V	1	2		kΩ	
Signal Output	Ripple	Without filtering		5	7	mV	
Signal Volt. To	emp. Drift			25		μV/°C	
Referential	Volt.	Output current <50mA		5		V	
Auxiliary	Voltage	User defined	3.3	12	24	VDC	
Power Current		VD=24V		30		mA	
Power Output Ripple		Without filtering	10			mV	
Operating/Am	bient		-20	-20		${\mathbb C}$	
Storage Temp).		-40		125	$^{\circ}$	


Dimension and Pin Definition



Typical Applications:

频率输入电压输出 (FV)应用接线图

频率输入电流输出(FI)应用接线图

Frequency Signal to Voltage Type Pin Definition

	<i>y</i> - 1911411								
Signal	Signal	NC	Input	Input	NC	Gain	Gain	Isolated	Isolated
Input +	Input		Auxiliary	Auxiliary		Adj.	Adj.	Signal	Signal
	GND		Power +	Power -		Terminal	Terminal	Output -	Output +
						#1	#2		
						50K	50K		
IN+	GND1	NC	VD+	VD-	NC	ADJ	ADJ	GND2	Vout+
1	2	3	4	5	6~12	13	14	15	16

Frequency Signal to Current Type Pin Definition

	requested sentent type time community											
Signal	Signal	NC	Auxiliary	Auxiliary	NC	Zero	Zero	Zero	Gain	Gain	Isolated	Isolated
Input +	Input		Power +	Power -		Adj. pin	Adj. pin	Adj.	Adj.	Adj.	Signal	Signal
	GND					#1	# 2	pin# 3	pin# 1	pin# 2	Output -	Output +
						10K	10K	10K	50K	50K		
IN+	GND1	NC	VD+	VD-	NC	ZA1	ZA2	ZA3	ADJ	ADJ	lout-	lout+
1	2	3	4	5	6~9	10	11	12	13	14	15	16

Product Show

ISO9001:2008

^{*}Note: the specification is subject to change without notice.

Application Examples:

E.g.1 (Refer to Fig.1):

Measuring low voltage frequency signal, output voltage signal value.

Input 0-10Khz/3-10VAC frequency signal; 0-5VDC isolated output. Zero adjustment already done before ex-factory, no need to be set again. W1=50K (multi-turn potentio-meter), adjust the multi-turn potentiometer to make the module output 5VDC.

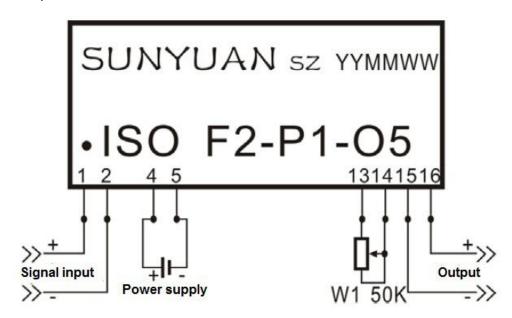


Fig. 1 Measuring low voltage frequency signal, voltage signal output

E.g.2(Refer to Fig.2):

Measuring low voltage frequency signal, output current signal value.

Input 0-10Khz/3-10VAC frequency signal; 4-20mADC isolated outputl. Short-circuit the input terminal, adjust W2=10K (multi-turn potentiometer) to make the module output 4mADC. Use W1=50K (multi-turn potentiometer), adjust the multi-turn potentiometer to make the module output 20mADC.

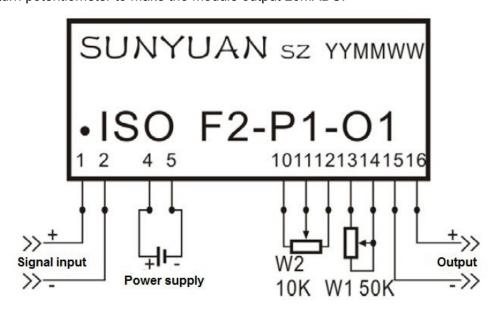


Fig. 2 Measuring low voltage frequency signal, current signal output

E.g.3(Refer to Fig.3):

Measuring high voltage frequency signal, output current signal value.

Input 0-10Khz frequency signal, frequency amplitude is higher than 10V; 4-20mADC isolated output. Short-circuit the input terminal, adjust W2=10K (multi-turn potentiometer) to make the module output 4mADC. Use W1=50K (multi-turn potentiometer), adjust the multi-turn potentiometer to make the module output 20mADC.

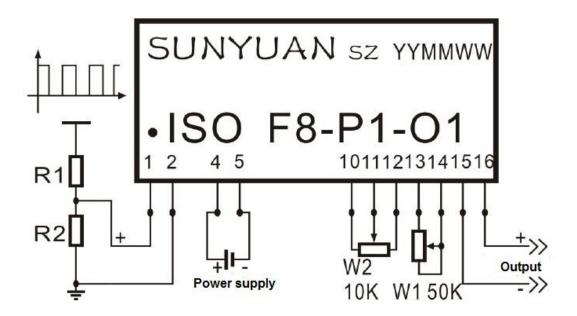


Fig. 3 Measuring high voltage frequency signal, current signal output